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r ABSTRACT __'k

andA brief summary of the advantages uses of digital

differential analyzers is provided. After reviewing the principles

of operation, coding, and scaling of digital integrators, the detailed

design of an integrator is discussed, The design includes two full

adder/subtractor units, two variable length shift registers to pro-

vide internal memory, and utilizes a binary method of coding

increments. Implemented with integrated circuits, the integrator

is demonstrated with an example problem. The experimental

I results are tabulated and ou_npared.

!

P



ACKNOWLEDGMENTS

The author wishes to thank Dr. H, W. Mergler for his

help in the formulation of this problem and for his guidance at

various stages of development. During the implementation of the

project, the advice of Dr. Jerome F. Walker, James E. Palmer,

and Stuart F. Daniels was helpful and is appreciated.

iii



TABLE

ABSTRACT

ACKNOWLEDGMEN_FS

LIST OF FIGURES

OF CONTENTS

Page

ii

iii

vi

LIST OF TABLES

LIST OF SYMBOLS

vii

v_ii

CHAPTER I

INTRODUCTION

Features of Digital Differential Analyzers

Uses of DDA's

CHAPTER II

PRINCIPLES OF OPERATION

Data Transfer Within the Integrator

Coding

A Proof

Adders

Integrator Modes

Scale Factors

Computer Program

O

CHAPTER III

DESIGN AND IMPLEMENTATION

Integrator Design

Operation
iv

1

4

6

9

21

23

Z5

Z6

30

44

47



CHAPTER IV

COMMENTS AND RECOMMENDATIONS

APPENDIX I

LOGIC DESIGN

APPENDIX II

INTEGRATED CIRCUITS

APPENDIX III

TIMING

APPENDIX IV

EXPERIMENTAL RESULTS

B IB LIOGRA PHY

54

57

68

69

7Z

83

v



LIST OF FIGURES

Figure No.

1

2

3

4

5

6

7

8

9

I0

II

IZ

13

14

15

16

17

18

19

20

21

Z2

Z3

Title

Integration Approximation

Integrator Block Diagram

Integrator Block Diagram

T rape zoidal Approximation

Schematic of an Adder

Schematic for Example 1 1

Block Solution for Example 12

Schematic for Example 12

Simulated Integration

Schematic for First Computer Run

Integrator Block Diagram

Detailed Block Diagram

Integrator with Control

Integrator - Front View

Integrator - Rear View

Circuit Board Containing two full
adder / subtractors

Circuit Board Containing a twelve bit

shift register

Full Adder/Subtractor

Shift Register

Down Counter

0 - register

Control Unit

Timing Delays

vi

Page

7

7

I0

I0

Z4

24

31

31

4O

4O

45

46

49

5O

51

52

53

62

63

65

66

67

7O



24

25

Timing Diagrams

Schematic for y =

71

73

Table No.

1

2

3

4

5

6

LIST OF TABLES

Title

Logic Elements

Truth Table for A ± B

Map for S/D

Map for C0/B 0

Quantity of Logic Elements Used

Experimental Results

Page

58

60

61

61

68

79

vii



J

Clock ,.
p-

K

Preset
List of Symbols

Q

J-K Binary Element

Q

Preset K

OR Gate

AND Gate

NOR Gate

viii



I

i

I

P

I

CHAPTER I

INTRODUCTION

Features of Digital Differential Analyzers

The need for a simple, compact digital computer suitable

for solving differential equations led to the development of the

Digital Differential Analyzer (DDA). The DDA may be put into the

class of analog computers since it is a device consisting of a num-

ber of separate functional units, each unit containing all elements

required for the particular function. It is similar to analog ma-

chines in that the quantity of apparatus needed depends upon the

complexity of the problem. The functional units are interconnected

directly in accordance with the structure of the problem being

solved. However, within the functional unit, the computation is

digital.

The basic functional unit in a DDA is the integrator. If

only one integrator may operate at one time due to there being only

one arithmetic unit, then it is a serial DDA. In a parallel DDA all

integrators may operate simultaneously. The parallel DDA is

more complex in construction but is naturally faster than the serial

DDA. Accuracy of the DDA may be increased at the expense of



running time; hence, the potential accuracy greatly exceeds that of

other types of analog computers.

An important feature is that the independent variable need

not be time. Also it is not necessary to manipulate problems in

order to avoid integration with respect to a variable other than the

independent variable. These features are possible since all inputs

to the integrators are pulse trains which need not be dependent

upon time.

The outstanding features of digital integrating devices have

been itemized by F. V. Mayorov as follows:

"a) In integration, the computer operates with increments

of input quantities and not with the quantities themselve as in the

arithmetic machine. This permits considerable increase in com-

puting speed and in switching (or interconnection) of the integrators.

"b) By using integration as a basic operation, operations

of multiplication, division, extraction of a root, sine of a number,

and logarithm calculation take a time equivalent to that for two or

three addition operations. Insertion of various experimental and



tabular values into a digital integrating computer can be simpler

than in an arithmetic machine . .

"c) The memory access time in a digital integrating

computer is practically zero. The data reaches the machine in a

continuous flow, one code after the other, without requiring an

access from the memory .

"d) Solution of a relatively complex problem in a DDA

does not require an internal memory of large capacity .

"e) Depending on the required accuracy, the digital inte-

grating computer possesses flexibility in computing speed. A

given problem may first be solved with a low accuracy but at a

high speed. The same problem is then solved with a higher accu-

racy but longer solution time. "

If the reader is familiar with the mechanical Bush

analyzer, G. F. Forbes states that "any problem capable of being

solved on the Bush analyzer may be solved more easily on the DDA.

Problems too complex for the Bush analyzer can be done on the

DDA. "
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Uses of DDA's

Although the DDA may be used for scientific computation

or simulation, it is primarily used for automatic control. The

following uses for DDA's were noted by A. V. Shileiko in his book,

Digital Differential Anal_ers, originally published in k4oscow,

1961:

"Litton Industries have created a digital differential

analyzer, now being tested by naval specialists with a view to using

it in aircraft.

3
"A DDA flight-tested in the X-10 rocket occupied . 081 m ,

weighed 66 kg, and consumed 100 W, precisely 1/lZ of the con-

sumption of its valve-based predecessor. The device performed

93 integrations and enabled both trigonometric and differential

equations to be solved.

"Recent advances have led to newer types of digital inte-

grating computers developed by General Electric .

These compact computers, which are designed for missiles,

fighters, and bombers, are also used for control of Polaris mis-

siles in submarines and for inertial navigation of the missiles

themselves . "



This report first explains the principles of operation of

digital integrators used in DDA's. ' Then the design and implementa-

tion of such an integrator is described.



CHAPTER II

PRINCIPLES OF OPERATION

Data Transfer within the Integrator

The integration process z
= / ydx

n

lira. r. yj A x
Ax_O j=l

is defined

which can be approximated by

n

Z yj Ax
j=l

shown in Figure I.

This is the familiar concept of summing rectangular

strips to obtain the area under a curve, i.e., the integral. If Ax

were considered to be a unit distance, the expression reduces to

z = _" Yi" The digital integrator discussed in this thesis is based

on this expression.

Figure 2 shows how this expression could be implemented.

For each integration step the change in ordinate values,

_Y = Yj - Yj-I' is accumulated in the D register. This is added

to Yj-I by _'I to produce yj in the Y register. The Z register

6



Y

_ Axe--
w X

Figure 1 Integration Approximation

Z - Register

Ax

Y - Regis'

D - Register

Figure 2 Integrator Block Diagram



already contains
j-1

Yq •
q=l

Upon indication of another Ax, the new value of y, yj, is added to

the contents of z by 2_2 to produce

J

_" Yq .
q=l

_ontain

Note that the Z register would have to be quite large to

J

_" Yq
q=l

for an arbitrary j. Therefore, instead o_ storing the entire value

of z, the Z register is limited to the capacity of the Y register.

The overflow from the Z register is interpreted to be the change in

the integral, Az. In Figure 3 the Z register has been renamed the

S register since it only contains the less significant part of the

integral z.

The operation shown in Figure 3 may be expressed as

follows :



Y

t

= YO + t_ 0 dYdt dt

dz
-N

= p y dx where N is the

number of bits in the Y register.

z = z0

x

- /xo+ p ydx

Thus upon summing the Az output pulses, a value pro-

portional to ;ydx is obtained.
j

There are two popular methods of coding the increments

Ax, Ay, Az. In the ternary method a + 1 corresponds to a positive

increment, -1 to a negative increment, and 0 to zero increment.

This method requires a + 1 and a i 1 line for each input and output

of the integrator. If pulses were used to transmit the increments,

a pulse on either line could indicate the respective increment, and

the absence of a l_,lse on both lines could indicate zero increment.

The second method is the binary system of coding incre-
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/kZ S - Register

Y - Register

Ay D - Re

Figure 3 Integrator Block Diagram

Y

_i ml

i |

Figure 4 Trapezoidal Approximation
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ments. In this system a p_lse could be used to indicate a positive

increment and the absence of a pulse to represent a negative in.

crement. A zero increment would be transmitted by alternating

+ 1 and - 1. The circuitry involved in implementing this method is

less than for the ternary method. On the other hand, the ternary

method is more accurate.

At this point it is appropriate to digress a moment to

mention integration using the trapezoidal rule. In this method

rather than summing yl,Y2,... Yn' the mean ordinates, Ym =

+ 1/2 Ay, are summed. See Figure 4.Yn- 1

This results in a more accurate approximation of the

integral. However, Mayorov points out that in the binary system

of coding increments the integration error may amount to a least

significant bit in the Y or :S register. This error is considerably

larger than the error resulting from approximating the integral by

rectangles. Hence the trapezoidal method is justified only if the

ternary method of coding increments is used.

Returning to the subject of coding, the numbers contained

in the Z, Y, and D registers are usually represented in some form
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of the binary code. One basic form with a few variations will be

considered here.

Let the Y register contain numbers of the form

Yn+2 Yn+l Yn Yn-1 .... Yz Yl' where Yi are the binary digits 0 or 1.

Bits Yn through Yl are the information bits, Yn+l denotes sign, and

Yn+2 is the overflow bit.

Let Yn+l = 1 denote a positive number and let Yn+l = 0

denote a negative number. When Yn+l = 1 let the information bits

contain the true binary form of the number to be represented. For

Yn+l = 0 let the information bits contain the two's complement of

the absolute value,

The two's complement, denoted -r(N),

where n is the number of bits in N. The Yn÷z

late r.

is defined 2 n - N

bit will be discussed

Let the contents of the S register be similarly defined and

be of the form Sn÷ 2 Sn+ 1 . .. s 2 s 1. Examples follow for five in-

formation bits where the underlined bit is the sign bit:

Y = + 12 Y register = 1 0 1 1 0 0

S = - 7 S register - 0 1 1 0 0 1
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There are at least two acceptable ways to code the D

register. In one the meaning of the sign bit is reversed but the

same rules apply to the information bits.

_'.Ay > 0 D = _. Ay (base Z)

_.Ay < 0 D = zn+v(_ Ay)

For example,

_ Ay = + lZ D = 0 0 1 1 0 0

7, Ay = - 5 D = 1 1 1 0 1 1

With this definition for the D register, an adder for E 1

will be sufficient to produce correct results when _. Ay is added to

Y, regardless of the sign of either Y or _ Ay. For example,

Example 1

0, 0

Y = zn+Y; D = _, Ay

D + Y = zn+y+_Ay (Z n indicates positive)



14

Example Z

Y < 0, _ Ay> 0, I Y [ < I _.Ay I

Y = ;r(Y); D = _. Ay

D + Y = "r(Y)+ E hy

= zn-Y + EAy

= zn+(_.Ay_ y)

D + Y > Zn (Zn indicates positive)

Example 3

Yj = +4, _Ay =-7

Y.= I00100
j --

D = 111001

Y 011101 = -3
j+l -

Another method of coding D is to let the information bits

contain the true binary form whether the number be + or -. Now

2] 2 must be an adder/subtractor. When dn+ 1 is 1, 2] 1 adds; when

dn+ 1 is 0, 2] 1 subtracts. However, the sign bit of D must not

enter into the addition or subtraction.



Example 4

15

Y. = -1Z
J

_,,Ay = +3

Y. = 010100
.) --

D = +00011

Y. = 010111
J+l --

= -9

Example 5

Y. = +4 Y. = 100100
J J --

Z;Ay = - 7 D = - 00111

011101 = -3

During an integration process the Y register must not

overflow. If at the end of a cycle the overflow bit, Yn + 2' contains

a 1, the integration must stop and the problem must be rescaled.

The S register is expected to overflow. When Sn+ z = 1 then

AZ = + 1; when Sn+ z = 0, AZ = - 1. The combining of Y and

S for each Ax could be accpmplished with an adder for ZZ" Several

examples follow:

Example 6

LetS 0 = 0 andY

S = 100000

Y = I00000

= 0 (constant)

1000000, AZ = +1
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The bit to the left of the underlined bit is the overflow

bit. Since it is a 1, AZ = + 1. Continuing with Y = 0,

S = 000000

100000

0100000, AZ = -i

S = i00000

I00000

1000000, AZ = +I.

Hence the output alternates ÷ 1, - 1, + 1, - 1 . .

which is a net change of zero for the integral Z.

Example 7

Let S O = 0 and Y = Ymax

S = I00000

Y =111111

I01 iiii,

S = 011111

111111

AZ = +i

I0111 I0, _Z = +i
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S = 011110

111111

i011 I01, AZ = +I

Thus the maximum Y causes the maximum positive rate of

change of Z. AZ = + 1, + 1, + 1 .

Example 8

Let SO = 0 andY = i/Z Ymin

Y = 0 0 0 0 0 =- 16
min --

I/ZY = 0 1 0 0 0 = - 8
min --

S O =

Y =

10000

01000

11000,

01000

00000,

01000

01000,

01000

AZ = -1

_Z = +i

Z_Z = -I

S4=So = _0000, _Z =-1
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This is half of the maximum negative rate of change°

three of the above examples have been for Ax always being +Io

When Ax = - i, the operation S - y is to occur°

All

Mayorov suggests that when Ax =-1, the one's comple_

ment of Y should be added to S° However, this writer feels that

this introduced unnecessary error.

To illustrate,

Example 9

Ax

S o

- 1 (constant) Y --

= 1000 Y =

I000

0111

S O 1000 1011

0111 0111

1111 Az=O 0010

0111 0111

Ol I 0 Az=l 1001

0111 0111

1101 &z :: 0 0000

0111 0111

0100 Az=l 0111

0111 0111

&z ---:1

Az= 0

_z=l

_z=O

1011 Az =0 1110 &z = 0
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The rate of change of Z should be zero; hence, /kz should

alternate between + 1 and - I. However, after 10 iterations

Az = - 2. The reason for this discrepancy is thatO 1 I 1 is by

previous definition equal to - i. This only points up the fact that the

one's complement differs from the two's complement by one in the

least significant bit. For N information bits, the error produced

for Ax = - 1 (constant) is given by,

-N
¢ = 2 M where M is the number of iterations.

If the two's complement of Y were added to S when

Ax = - 1, the result would be exact. Note that _( 1 0 0 O) =

1 0 00. It has already been shown that successive additions of

1 0 0 0 produce alternating + 1 and - 1 for Az.

Another approach which will insure an exact result when

Ax = - 1 is to actually perform the subtraction S - Y. If an

adder/subtractor were used for E2' then there would never be any

need to take the one's complement or two's complement of Y. It

has been defined that Az = + 1 when there is an overflow. But if a

subtraction were to occur when Ax = - 1, what is the meaning of
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an "overflow" in the S register ? In subtraction, rather than an

outgoing carry, there is .S_netimes an outgoing borrow. In the

example below, the outgoing borrow will be noted.

Example 10

Let S O = 0, V = 8, Ax = - 1, -1, -1, -1

s 1 = (s o - Y)

s o : 1oooo

Y = 11000

S 2

: 11 ooo B 0 : 1
- 1 I000

I ,I,i

: ooooo B0 : o
- II000

: Ol ooo B0 : 1
- llO00

S 3

S 4 = S O = _0000 B 0 = 1

Recall example 8where S 0 = 0, Y = - 8, and

Ax = + 1, +1, +1, +1. Note that examples 8 and 10 are actually

the same integration. In example 8, the output sequence for Az

was - 1, + 1, - 1, - 1. The similarity to the sequence of outgoing
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borrows in example 10 is obvious. It seems that when subtracting,

if B 0 = 1 then Az = -1 and ifB 0 = 0 then Az = + 1. This deo

duction is true and is proved below:

To Prove : The outgoing borrow, B0, produced by

subtracting N from M is the complement of the outgoing carry, CO,

produced by adding the two's complement of N to M.

length.

Proof: Let M and N be binary numbers of equal

Let n be the number of bits in lvi and N, including sign

bit.

The two's complement of N,

n is the number of bits in N.

_(N), equals Z n - N, where

There are only two possible cases for M - N; either

N>MorM>N.

Case 1 N > M

B = 1
0

The subtraction M - N will result in an outgoing borrow.
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Hence,

M

N

2 n

+ _(N) = M + 2n - N

= 2n + (M - N)

= 2n- (N - M)

> M -> (N - M) >

- (N-M) < 2n

0

All numbers less than 2n can be contained in n bits. An

overflow would be indicated by a 1 in the n + 1 bit. Hence there is

no overflow. C O = 0

Case Z M > N

The subtraction M - N will not produce an outgoing

m + _r(N) = M + a n - N

borrow. B 0 = 0

= 2n + (M - N)

M > N -> (M-N_) > 0

Hence, Zn + (M - N) > Zn

All numbers greater than or equal to Zn

tained in less than n + 1 bits. Since M has n bits,

cannot be con=

M< 2n
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Hence, (M = N) < 2 n

N =0
rain

Z n + (M - N) < Z n+l

([ 2 n + (M - N)] = 2 n + 1
max

- i)

Since 2 n+l > Zn + (M - N) _> 2 n there must be a 1 in the n + 1

bit. Therefore, G__ = 1 Q.E.D.

Adders

It has been stated earlier that the Y register must not over-

flow during an integration process. However, if it is permitted to

overflow, the integrator can be used as an adder. Figure 5 shows

the schematic for an integrator which is wired as an adder,

Initially, the Y register is set to its maximum positive

value, + max, and Ax is always + 1. First disregard u, v, and w.

The first Ax pulse will produce Az = + 1. Since Az is fed back into

the dy input, it will cause the y register to change from + max to the

maximum negative value, - max. The next Ax pulse will produce

Az = - 1, which will return the Y register to + max. Hence, for no

inputs u, v, and w, the output alternates between + 1 and - 1. If u,

v, and w would produce ZAy = + 3, then the next three Az outputs

would be - 1 neglecting future inputs. In this way the
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v

w

dx input

dy input /

dz output

T --

Figure 5 Schematic of an Adder

ii dx

6dY

4 dz

Figure 6 Schematic for Example 11
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integrator_ adds but with_ sign change and time delay.

dz du dr. dw

dt dt dt dt

Integrator Modes

The assumed mode of the integrators in most discussions

is the interpolative mode. This is when upon receiving Ax and Ay,

the present contents of the Y register are added to S. At the end of

the addition cycle,

S. = S. + Y°
I+1 : :

= Y + AyYi+l i

The extrapolative mode differs in that the new value of

y is added to S.

_hen, S. = S. + Y
1+1 : i+l

Yi + 1 = Y': +_/"

The choice of mode of an integrator is dependent upon its

position in the schematic of the solution. The interpolative mode
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gives greater accuracy when the dy inputs are integrator outputs

which have occurred in the same or a previous integration period.

When the dy inputs are the outputs from an integration occurring at

a future time, the mode should be extrapolative. In an actual DDA

the mode of each integrator would be set manually.

Scale Factors

G. F. Forbes has proposed a method of scaling to aid in

solving problems on a DDA. The following is an example taken from

his book, Digital Differential Analyzers:

Example 11

Given: The scale of input dx is 2048 pulses per unit.

The scale of input dy is 64 pulses per unit° The maximum absolute

value of y is to be less than 88 units throughout the integration.

Determine the scaler.pfthe output, dz, and the integrator

length, i.e. , the number of bits necessary for the Y register so

that it does not overflow.

Fibre 6,

In the schematic representation of the integrator,

the scale is indicated by writing the power of two rather
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than the number itself.

The scale of dy is 6, (26 = 64). The number of binary

bits necessary to contain 88 units is 7, (27 = 128). Hence the

scale of y is 7. The input dy is added to the sixth bit to the right

of the binary point and there are seven bits to the left of the

binary point. Thus the integrand length is 13, (7 + 6 = 13).

Usually the integrand length is referred to as the integrator length

since both the Y and S registers are the same length.

If y were unity, one unit of dx input (2 ]_" pulses) would

produce 2!!/27 = 24 output dz pulses. These pulses must re-

present one unit of z, thus the scale of dz is 4.

In general, the scale of y plus the scale of dy is equal to

the integrator length. The scale of dx minus the scale of y is equal

to the scale of dz. When the output of an integrator is used as the

input to another or the same integrator, the scales must be the

S ame.

These conclusions may be derived mathematically by
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considering the basic equation, dz = ydx.

-N
dz - p ydx for N bit registers

Inse_ting scale factors

-N
S dz = p S y S dx

z :. y X .

Since the integrator must produce dz = ydx,

-N
S dz = p S S dz

z y x

The scale factors are usually chosen to be whole number powers

of the base of the notation in use.

Redefining,

S S S

z y; xS = p ; S = p S = p
z y x

S S S
z -N y x

p dz = p p p dz

S S S
z -N y x

p = p P P

S = -N+S +S
z y x

(i)



S
y m N

P P < p

29

m °

where p is the maximum value of y.

S +m< N
y

(2)

When m = N - S
Y

- s -m (3)S
Z x

Forbes discusses the generation of trigonometric £tmc-

tions, algebraic functions, inverse trigonometric function, normal-

ization, differentiation, solution of simultaneous equations, complex

functions, complex polynomials, and many other uses of a DDA.

EQ

For many problemm, the following procedure suggested by

L. Braun may be used:

1. Reduce to a set of differential equations.

2. Isolate the highest derivative of each dependent

variable by putting it on the left side of the equation

and all other terms on the right.

3. Assume the highest derivative is known, and

by integrating it, generate all lower derivatives

required in the problem.

4. Combine the variables on the right side of the
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equation and use this sum as the source of the

assumed highest derivative.

Example 12

*tax + bx + cx = 0

= - b/a x - c/a x

This is shown in Figure 7.

The schematic for this problem is shown in Figure 8.

Appropriate scaling can be done when the approximate

range of each integrand and the desired accuracy are known.

Computer Program

Before beginning a hardware design of a digital inte-

grator, it was felt that a computer simulation would be helpful

in understanding and evaluating the simpler, yet confusing,

method of binary transfer of increments. The following flow chart

was used in writing this program:

IL = integrator length

S = scale of x
X
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/ x / x

Figure 7 Block Solution for Example lZ

dt

o*

X

dt

i

A

- b/a

Ax

- c/a

Figure 8 Schematic for Example 1Z
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M

ACTY

F(x) =

= maximum value of y

= actual y value

a separate subroutine which provides the value

of the dependent variable when given a particu-

lar value, x, of the independent variable,
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I READSx, S_, M, X0, Xf, Z 01

IL = M + S
Y

S = S -M
Z X

Y = S O = ZIL

N = 1

X(N) = X(N-1) + Z**(-Sx)

Y(N) = F(X(N)) + Z**IL

X(N) = X(N-1) - Z**(-Sx)

Y(N) = F(X(N)) + Z**IL

o>
< Y(N) +S(N-1) : Z** + 1)> <S(N-1) - Y(N) :

/_ELZ(N)=t IIDELZ: o LI

I ACTY(N) = (Y(N) - Z','*IL)/Z** SY 1

<DELZ(N):I>

I z(N) --z(N-1) + z**(- s )I I z(N)- z(N'l) ° z**(-s_) I
\ ./

I STOP l IN = N+I, GO TO LOOP l

LOOP: I
=
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Prior to writing the subroutine, F(x), the following flow

chart was prepared:

Y - register Ioverflow

<,, JZ(x) I : (z**(M- 1 ))

Ft-II -- 2**M

;Lo = -(Z**M)
N = 1

LIMIT = SY +M + 1

S
IFTRY = IFHI + FLO)/2[ =

!

Z]FTRY - F(X) I : (z*_-SY)>
\>

[Fill = FTRY l [FLO = FTRY l

LIMIT x>

1<__
[FX = FHII [FX = FLO]

_- (z**sY) _x + z** (sY +

[RETURN]
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The two simulated integrations included in this report

approximate the area under the parabola y = 8 - 2x 2 from x = 0 to

x= 1° This is shown in Figure 9.

The schematic for the first run is shown in Figure 10.

maximum value of y.

determined by

The program was given the scales of dx and dy and the

The integrator length and scale of dz are

IL = Sy + Sdy

Sdz = Sdx- S °Y

It will be noted that in the program the binary method of

increments is used for dx and dz but not for dy. However, the value

of y used in the calculations is limited in accuracy by the number of

bits in the Y register. Note in the results that for the first 40

iterations, the actual y value changes from 8.0 to 7. 99779. This

change is too small to change the value in the Y register which is

significant to 6 binary places (Sdy = 6). The printed value of 1536

for the Y register includes the sign bit and ignores binary point. It

may be decoded as follows:
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Y

8

Y = 8 - 2x 2

L X

Figure 9 Simulated Integration

I0 dx

4

6dY

6 dz
v

Figure 10 Schematic for First Computer Run
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1536 - 2 I0 (signbit) = 1536 - 1024

= 512

(512)10 = (i 0 0 0 0 0 0 0 0 0)2

Inserting the binary point six places from the right (Sdy=6),

(1 0 0 0 . 0 0 0 0 0 0)2 = 8.0, the value of y.

Note that the Y register does gradually change since on

the last iteration it is 1408 when y has decreased to 6.

For each step if Ax = i, the Y register is added to the

S register and if Ax = 0, then Y is subtracted fromS. If there is

an overflow after addition or no outgoing borrow after subtraction,

then Az = i; otherwise Az = 0. A summation of all previous Az

outputs is the value of the integral, recorded in the last column.

-6
Note that when Az = 0, an increment of Z (.015625 = 2 , since

Sdz = 6) is subtracted from the summation.

The three zeros for Ax (cycles 2, 4, and 5) may be inter-

preted as increments in the negative direction on the x axis. The

value of z for this initial period oscillates then goes negative after

cycle 5. This may be explained since at this point _,Ax = -1, hence
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the actual value of x is to the left of the y axis.

negative at this point.

The area should be

Since Sdx = 10, the value of x = 1 should occur after

210 = 1024 cycles. Because three of the Ax incr, ements were nega-

tive, there must be three extra positive Ax increments or a total of

6 extra Ax.

1024 + 6 = 1030, the printed number of iterations.

(The three negative Ax increments were inserted into the program

for illustrative purposes only.)

The final value of z is compared with the actual value to

determine the error.

7. 343750 = calculated area

- 7. 333333 = actual area

e = . 010417

In the second approximation of the area, the only change

was the scale of dx from 10 to 11. Now rather than summing 1024

strips between 0 and 1, the integral will be the summation of 2048

strips. Hence, the running time is doubled.
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7. 333333 = actual area

- 7. 328125 = calculated area

= . 005208

This illustrates the inverse relationship between running

time and error. By doubling the running time, the error was

halved.

The results of this program provided the incentive to

design an integrator with the binary method of increments.



CHAPTER III

DESIGN AND IMPLEMENTATION

Integrator Design

This chapter deals with the design of an integrator

which could be used as the basic unit in a parallel DDA. The

increments Ax, Ay, and Az are coded in the binary system. A

serial adder/ subtractor is used to combine Y with the contents of

the S register; thus, the inaccuracies involved with onels comple-

ment addition (see example 9) are avoided. Although no greater

accuracy will result, an adder/subtractor is used to combine

_.Ay and Y to simplify circuit design.

The integrator is capable of operating in either the

interpolative or extrapolative mode. For versatility of inter-

connection, the integrator length may be varied from 4 to I0. Also,

the Y register may be permitted to overflow, thus making possible

other uses such as an adder to combine pulse trains. The Az out-

put is compatible with both Ax and Ay inputs°

The block diagram is shown in Figure ii. This diagram

when expanded to include timing and more interconnections is

shown in Figure 12.

44
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Az S - Register

Ax ADD/SUB

Y - Register

Ay ADD/SUB

Figure II Integrator Block Diagram
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PK

(A/S) 2

MODE

(A/S) I

+Z_Z

S-REGISTER

PUSH BUTTONS

Y-REGISTER

_ ! _D-REG_ISTER 1 -_ _

I (_'L+2) PULSES

DOWN COUNTER

@

CLOCK INTEGRATOR

FREQUENCY LENGTH (IL)

@
T._,y

I__A_

INITIALIZE END OF
SUMMATION

P2

BEGIN NEXT
SUMMATION

FIGURE 12 DETAILED BLOCK DIAGRAM
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Operation

Before beginning an integration process, the initialize

pulse resets the Y and S registers to zero and resets C 1 to zero.

If the initial value for Y is other than zero, it is read into the Y

register via parallel inputs. During the start pulse, PZ' the inte-

grator length is set into the down counter, _. Ay is read into the

D register, the S register overflow bit is set or reset, and C 2 is

reset. After P2 the down counter emits IL + 2 pulses at the clock

frequency to completely shift the registers through the adder/sub-

tractors. The end of summation pulse, Pl' sets or resets the

ADD flip-flop, depending upon the signs of Ax and Ay. The cycle is

then repeated.

The mode switch, also in Figure 12, permits choice of

the old value of y which is in the register or the latest value of y as

it comes out of the adder/subtractor.

The detailed logic design is in Appendix I. These cir-

cuits were divided to fit on 5 printed circuit boards approximately

4 3/4" x 5" as follows:



2 boards:

1 board :

2 boards :
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two 1Z bit shift registers.

two full adder/subtractors.

one 3 bit shift register,

one 4 bit backward counter, and

assorted gates and flip-flops for

timing or control.

The complete integrator and the associated control unit

are shown in Figure 13. Other views of the integrator and two of

the circuit boards are shown in Figures 14 through 17. The lights

are also on circuit boards for easy insertion. They display the

contents of the S and Y registers. The upper rotary switch has

seven positions for setting the integrator length, i.e. , the length

of registers S and Y. The lower two position rotary switch is

set depending upon whether there is one or more than one dy input.

When there is one dy input, the D register is set to 001; when there

is more than one dy input, the switch permits 2_ Ay to be parallel

shifted into the D register by an adder unit which it is assumed is

part of the DDA. The push buttons across the front panel are for

presetting an initial condition other than zero into the Y register.

The toggle switch determines the mode m interpolative or

extrapolative.
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Figure  4 

50  

Integrator  - F r o n t  View 
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Figure 15 Integrator - R e a r  V i e w  
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F i g u r e  16 Ci rcu i t  Board Containing 

Two Full Adder/Subtractors  



53 

Figure  17 Ci rcu i t  Board Containing a 

12  bit Shift Regis te r  . 



CHAPTER IV

COMMENTS AND RECOMMENDATIONS

The use of integrated circuits for this project presented

no major implementation problems. No noise problems or capaci-

tance problems were encountered. Five printed circuit boards

were used to contain the circuits but the integrator presented in

this report could easily be placed on four boards at an average of

15 cans/board. A greater packing density could be obtair_ck using

multilayer boards. The previous pictures of the boards show' that

the spacing could be decreased if interconnections were made on

more than two planes.

Another space-saving approach would be to use integrated

circuit modules. The integrator is basically two shift registers and

two adder/subtractors. Hence, it is conceivable that the bulk of the

integrator could be contained in four cans.

The potential accuracy of the integrator is limited by the

length of the shift registers. Thus, if greater accuracy than the

results in Appendix IV is desired, the integrator registers must be

greater than 12 bits.

54
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An easily overlooked feature of the Signetics integrated

circuits is that they can supply 2 mA at the "1" level and sink

1Z mA at the "0" level. Therefore, if a lamp is to indicate the state

of a binary element, it should be connected between a positive volt-

age and either output of the element. Excluding other loading, the

lamp may operate with up to 12 mA without overloading the element.

The 't0" voltage is less than . 6 volts while the supply voltage is 4.5

volts. Hence the ideal lamp should require a voltage of 4.5 - . 6 =

3.9 volts. A 3 volt lamp was used in this project and diodes pro-

vided the necessary voltage drop between the lamp and the supply

voltage.

In the interpolative mode the integrator may be operated

with a clock frequency up to 1.6 Mc. However, in the extra-

polative mode the maximum rate is 850 Kc. This is due to the

fact that in the extrapolative mode the two adder/ subtractors

operate in series rather than in parallel. This situation could be

remedied by designing one synchronous arithmetic unit which would

implement the following equations:
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Mode

Interpolative

Extrapolative

Outputs

(letters refer to registers)

01 = Y + D

oz ='g + Y

01 = Y__+ D

02 = S _.+(Y_+D)

With this arithmetic unit the maximum frequency should

not be mode dependent.



APPENDIX I

LOGIC DESIGN

Before considering the detailed logic, it is necessary to

mention some details about the rnicrologic used for implementation.

The input of an AND gate is a standard sink load. The

input of an OR gate is a standard source load. The flip flop J/and K

inputs represent i/2 sink load each. The Pj and PK inputs are one

source load each, and the clock input is 3/4 sink load. The NORS,

ORS, and flip flop outputs have a maximum fan-out capability of

12 source loads plus 5 sink loads. The fan-out of the AND gate is

limited to i0 source loads. These rules are adhered to in the

circuit to follow.

All logic is positive-true, i.e., positive voltages corres-

pond to logical 1 or ti'ue, while negative voltages correspond to

logical 0, or false. The elements may be used for functions other

than their name by defining other than positive-true on their inputs

and outputs. See Table i.

The configuration for setting or resetting the S register

overflow bit was designed by noting that the carry produced by

57
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Logical

Function

NOR

OR

NAND

AND

m _

_m

NOR

Circuit Element

AND
I

OR

Table 1 Logic Elements
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adding the two's complement is the complement of the borrow pro-

duced by subtraction. This was proved earlier in this paper°

When subtracting, an outgoing borrow will produce a one in the

overflow bit; no outgoing borrow, a zero. But in both cases the

opposite is necessary for the proper Az output. Hence, by setting

the overflow bit to a one prior to the summation (when Ax = -1),

then the final state of the overflow bit is complemented. If Ax = _ 1,

the overflow bit is preset to zero since addition will occur.

If the output of the integrator is to be minus the integral,

the + Az and m Az output lines are interchanged. Then the comple-

ment of the output pulse train is produced.

Adder/Subtractor

The adder/subtractor must be a "full" adder/subtractor;

i. e. , it must accept a borrow or carry input and produce a borrow

or carry output when appropriate. In Table 2 the truth table is

s hown.
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A C./B. ADD S/D C /B
1 O O

L

0

0

0

0

1

1

1

1

0

0

0

0

I

1

1

I

B
1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

1

1

0

1

0

0

1

0

1

1

0

1

0

0

1

0

0

0

1

0

1

1

1

0

1

1

1

0

0

0

1

Table Z Truth table for A + B, A - B.

The maps for S/D and C0/B 0 are in Tables 3 and 4.
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.A B 00 01

0 0 0 0

0 1 1 I

1 1 0 0
I

1 0 1 I1
i

1 1 10
I

I 1 1

0 1 0

I 1 1

0 1 0
i

C ADD A

0

0

1

1

B 0 0 0"I 11 ] 10 IC ADD
I i I I

o oloio 1 1
1 1 I 0 1 1

1 0 I i 1 1

0 0 I 0 1 0
i

Table 3 :

Map for S/D

Table 4:

Map for C0/B 0

S/D = A_B_C

S/D = AfiC +ABC +ABC +ABC

CoIB 0

Co/B 0

= A C AD--"-'D+ A B AD-'-_+ BC

+ AC(ADD) + AB(ADD)

= A ADD (B + C) +A(ADD) (B + C) + BC

Other equations are possible, but since the micrologic

gates have three inputs, these equations were chosen to minimize

gates. One four input gate is necessary. This is implemented by

using two diodes on one of the gate legs as shown in Figure 18.

The shift register in Figure 19 contains all necessary

input and output lines for either register Y or register S. This
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B

C

D

C

B ÷

_S

i

C

ADDO-

AO- --

Figure 18 Full Adder /Subtractor

Co

------O C
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O

O

s

Figure 19 Shift Register
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permits one circuit board design to meet the needs of both regis-

ters.

The down counter is shown in Figure Z0° The integrator

length is set on a rotary switch before starting the process. For

each cycle the input levels will be such that IL + 1 is read into the

counter. It will then emit IL + Z shift pulses to the rest of the

integrator. _,_ _w,,,t_, _'_o _* 1 1 1 |

Figure Z1 shows the D register. Any number representing

Ay from 0 to 7 may be set into this register. The sign of _ Ay is

recorded by the ADD flip flop (shown in Figure 1Z) whose inputs are

Ay and - Ay. It is assumed that a separate unit which combines

several dy inputs will feed this device when more than one dy input

is desired.

The control unit in Figure ZZ was built in addition to the

integrator to test its operation. A control similar to this would be

adequate for up to 1Z integrators. The unit provides to the inte-

grator a basic frequency and the pulses P1 and PZ at the proper

times. After the start pulse the eleven bit backward counter per-

mits 210
PZ pulses to go to the integrator. The pulse generator

produces from 400 Kc to 1.8 Mc operating frequency when a 15K

potentiometer is used for R.
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PULSES"
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P2

-0

(IL+I)

-0

Figure ZO Down Counter



66

)P2

O_

0_-

(

TO (A/S) I

I

I
6

SHIFT

Figure 21 D Register
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APPENDIX II

INTEGRATED CIRCUITS

Table 5 itemizes the amount of logic necessary to imple-

ment the integrator and control unit.

INTEGRATOR

35

QUANTITY ITEM

16

4

5

Z5

35

TOTAL 60

J-K binary elements

Dual NOR gates (Z

gate s / can)

Dual OR gates

Dual AND gates

gate cans

binary element cans

TO-5 cans for integrator.

CONTROL UNIT

QUANTITY ITEM

16

16

TOTAL

TOTAL

4

1

5

Zl

81

J-K binary elements

Dual NOR gates

Dual AND gate

gate cans

binary element cans

TO_5 cans for control

TO-5 cans for project.

Table 5 Quantity of Logic Elements Used

68



APPENDIX III

TIMING

The delays associated with the logic elements are noted in

Figure 23. The timing diagram for m-iticalvoltage levels is

Figure 24. All measurements are in nanoseconds.
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3.5V

B

[2.8v tl.4 v

1.4V

i

7O

B

r-2.8v

1,4v

i

T = 30 - 60 ns
1

T = 20 - 35 ns
2

AND Gate

T 1 = 35 - 40 ns

T 2 = 50 - 70 ns

NOR Gate

5.5VL"_ _ CLOCK INPUT PULSE
1.4v

I tf 20ns

OUTPUT

1,4v

.T,

OUTPUT

PRESET J-KINPUT PULSE

tf = 20ns

1.4OUTPUT

,=---.-- T4

-2;8v

OUTPUT

T = 57 - 80 ns
1

T 2 = 95- 130ns

J-K Binary Element

T 3 = 125 ns (max)

T 4 = 150 ns (max)

J-K Binary Element

Figure Z3 Timing Delays
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APPENDIX IV

EXPERIMENTAL RESULTS

Problem: Solve the differential equation _ = y. Figure 25 shows

the schematic of the solution.

x
The solution to this equation is y -- e . In the results to

follow, the initial conditions (x 0, y0 ) = (0, 1) were used.

Case I

S = 10, O<x< 1, M = Z
X

S = S - M = 8
z x

S = S =8
y z

IL = S +M = I0,
Y

These conditions utilize the integrator to its greatest

accuracy for calculating the value of e. The integration process

will, in effect, divide the inveral 0 < x _< 1 into 210 = 1024 Ax

incremer_sand sum the value of y at each Ax. The mode is inter-

polative for best results. Since in the generation of an exponential

the early values of y greatly influence its later values, the value of

y produced by the integrator is dependent upon the initial Ay.

72
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S
x

M

S
Y

S
z

IL

Figure 25 Schematic for y =
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The initial Ay is known only if the sign of the slope dy is
dx

known at x 0. For the exponential,( dd_xx)0

result should be obtained if (Ay) 0 = + 1.

when (AY)0 = + 1 is that

e " 10

2

= +. Therefore, a better

The result in _ble 6

10111000

00000

50000

125OO

06250

03125

= 2 71875

The actual value of e is 2. 71828 . The calculated

value is in error by ÷ 0. 00047. The least significant bit in the

calculated value represents an increment of 2 -8 = .0039... Hence

this result is the closest possible value to e which is expressible in

10 information bits,

Cases 2 - 9

The maximum y is varied from M = 3 through

although the integration is only to x = 1 ( y = e).

M = 10



Cases 10 - 18
., , i j.
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Same as cases 1 - 9 except that the mode is extrapolative.

Case 19

S = 9, O<x< I, M
X

S = S -M = 7
Z X

S = S =7
y z

IL = S + M = 9
Y

= 2

Here the integrator length was reduced to 9 since the

number of Ax between 0 and 1 was reduced from 1024 to 51Z.

mode is interpolative.

The

Cases 20 - 2Z

M varies from3 through 5.

Cases 23 - 26

Same as cases 19 - 22 except that the mode is extrapolati_.

Case 27

S = 10, 0 <x< Z, M = 3, Interpolative
X

S = S - M = 7
z X



S = S
y z

IL = S
Y

= 7

+ M = I0
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go to 2,

This is the same as Case 1 except that x is permitted to

2
Hence, the result is the value of e 2. (e = 7. 3891.)

For(Ay) o : I,
2

e 1 Ii. 0110110

7.000000

.250000

_. i Z 5 0 Q 0 7.4219

031250
7.3891

0 1 5 625 er_r=0.0328

7.421875

_'or (AY)o
2

=0, e IIi

7

0100110

000000

250000

031250

7.3891

7.2969

0 1 5 6 2 5 _.0922

296875

Cases 28, 29

Same as case 27 exceptM = 4, 5.

Case 30

M = 5, 0< x< 3, S = 10, Interpolative
X
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10100

000

5O0

125

3
Calculated e = 2 0 . 6 2 5

3
Correct e = Z 0 . 0 8 6

Cases 31 - 34

Same as cases Z7 - 30 except that the mode is extra-

polative.

Cases 35 - 37

S = 9, O< x< Z, M = 3, 4, 5
X

Interpolative Mode

Cases 38 - 40

Same as cases 35 - 37 except that the mode is extra-

polative.

Case 41

S = 10 1 < x< 2, M = 3, Interpolative.
X
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Case 27 produced the value of e 2 starting from the initial

conditions (x, y) = (0, 1). Here the inserted initial conditions are

(x, y) -- ( 1,

2 = 1
e = 111 0110010 for (Ay) 0

7.000000

.250000

.125000

015625

2
Calculatede = 7 . 390625

2
Correct e = 7 . 3891

error = 0 0 1 5

This result is the closest possible value to e 2 which is

expressible in 10 information bits.



TABLE 6

EXPERIMENTAL RESULTS

Case No.

1

Z

3

4

5

6

7

8

9

I0

II

IZ

13

14

15

16

17

18

19

Z0

(ay)o = o

I0. I0110100

010.1011000

0010. i01010

00010. I0100

000010.1000

0000010.100

00000010.00

000000001.0

0000000001.

(_Y)o : 1

10.10111000

010.1011110

0010.110000

00010.11010

000010.1110

0000011.000

00000011.10

000000100.0

0000000101.

10.10110100

010.1011000

0010.101100

00010.10100

000010. i000

0000010.100

00000010.00

000000001.0

0000000001.

i0. I011000

010.101010

79

I0. i0111010

010. I011110

0010. II0000

00010. II010

000010.1110

0000011.000

00000011.I0

000000100.0

0000000101.

I0. I011100

010. ii0000
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22

23

24

25

26

27

28

29

30

80

0010. I0100

00010. i000

lO. lOllO00

OlO. lOlOlO

OOlO. lOlO0

O0010,1000

iii.0100110

0111.010000

00111,00100

I0011.01100

O010.11010

00010. III0

10.1011110

010,110000

0010.11010

00010.1110

111.0110110

0111.011110

O0111.10010

10100.10100

31

32

33

34

35

36

37

38

39

40

41

Iii. 0101000

0111. 010000

00111. 00100

I0011. 01110

m

IIi. 0111000

0111. I00000

00111. I0100

I0100. I0110

IIi.001110

0111.01000

00110. III0

III.011100

0111. I0010

00111. ii00

III. 010000

Ol ii. 00100

00110. III0

lll, OlOllO0

111,011110

0111.10010

00111.1100

III.0110010
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If Ax is made - 1 rather than + 1, the limits of integration

ma_ b_ reversed. Therefore, for each of the above cases when

Ax is changed from + 1 to - 1 after the forward integration, the

reverse integration will return the integrator to its initial condi-

tion, (x0 , yo).

When Ax is set at - 1 and the initial condition is (x 0, y0 )

_ L1 .,i r. 11 • I •

-I
e = 0.010111100

-2
e = 0.001000110

-3
e = O. 000011010

-4
e = 0.000001010

-5
e = 0.000000100

-6
e = 0.000000010

-7
e = 0.000000000

-I
Cal-culated e

-1
Correct e

error

-1
e

-7-

= 0.010111100

.2500000

.0625000

.0312500

.0156250

.0078125

.3671865

.3678794

.3671875

.0006919



82

The least significant bit is 2 -9 = 0. 001953 . . .

-1
Hence this result is the closest possible value to e

expressible in 10 information bits.

which is

The above values of e x for 0 > x > - 7 were produced regard-

le_s of mode or (_Y)O" The indifference to (_Y)O is because in the

negative direction the later values of e x do not depend so heavily

on the early values. The mode has no effect since in the interval

- 7 < x _ 0, the difference between Yi and Yi+l is insignificant to

9 binary places.
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